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A B S T R A C T

Background: Cognitive insight is defined as the ability to reflect upon oneself (i.e. self-reflectiveness), and to not be

overly confident of one's own (incorrect) beliefs (i.e. self-certainty). These abilities are impaired in several dis-

orders, while they are essential for the evaluation and regulation of one's behavior. We hypothesized that

cognitive insight is a dynamic process, and therefore examined how it relates to temporal dynamics of resting state

functional connectivity (FC) and underlying structural network characteristics in 58 healthy individuals.

Methods: Cognitive insight was measured with the Beck Cognitive Insight Scale. FC characteristics were calculated

after obtaining four FC states with leading eigenvector dynamics analysis. Gray matter (GM) and DTI connectomes

were based on GM similarity and probabilistic tractography. Structural graph characteristics, such as path length,

clustering coefficient, and small-world coefficient, were calculated with the Brain Connectivity Toolbox. FC and

structural graph characteristics were correlated with cognitive insight.

Results: Individuals with lower cognitive insight switched more and spent less time in a globally synchronized

state. Additionally, individuals with lower self-reflectiveness spent more time in, had a higher probability of, and

had a higher chance of switching to a state entailing default mode network (DMN) areas. With lower self-

reflectiveness, DTI-connectomes were segregated less (i.e. lower global clustering coefficient) with lower

embeddedness of the left angular gyrus specifically (i.e. lower local clustering coefficient).

Conclusions: Our results suggest less stable functional and structural networks in individuals with poorer cognitive

insight, specifically self-reflectiveness. An overly present DMN appears to play a key role in poorer self-

reflectiveness.

1. Introduction

The ability to reflect upon oneself, to not be overly confident of one's

own beliefs and to be open to corrective feedback from others is essential

for the evaluation and regulation of one's own behavior, emotions and

thoughts. An impairment in this ability has been suggested to play a role

in the impaired ability to recognize one's own symptoms in psychiatric

disorders. This has been referred to as “impaired insight into illness”, a

phenomenon that is seen in several neurological and psychiatric illnesses

such as schizophrenia, dementias, substance-related disorders, and

obsessive-compulsive disorder (Dam, 2006; Goldstein et al., 2009;

Mangone et al., 1991; Matsunaga et al., 2002). Patients with impaired
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insight are often able to recognize symptoms in others but not in them-

selves, leading to treatment non-adherence and poorer prognosis

(Lincoln et al., 2007; Startup, 1997). The abilities to reflect upon oneself

(i.e. self-reflectiveness) and to not be overly confident of one's own be-

liefs (i.e. self-certainty) are collectively termed cognitive insight (Beck

et al., 2004). Learning more about the neural substrate of cognitive

insight in healthy individuals may help gain a better understanding of

impairments and mechanisms underpinning impaired insight and

self-reflectiveness in psychiatric and neurological disorders. This could

be of value for treatment, as these aberrant cognitive thinking styles can

be used as intervention targets.

Thus far, only one functional magnetic resonance imaging (fMRI)

study investigated the relationship between cognitive insight and brain

activation in healthy individuals. The authors found significant positive

associations between self-reflectiveness and brain activation in the right

ventrolateral prefrontal cortex (VLPFC), and between self-certainty and

activation in the midbrain during an external source memory task (Buchy

et al., 2014). Several studies have been conducted in patients with

schizophrenia; significant correlations were found between

self-reflectiveness or cognitive insight and activation of several regions

distributed across the brain during an external source memory task

(Buchy et al., 2015), a reality evaluation and recognition task (Lee et al.,

2015) and a self-reflection task (van der Meer et al., 2013). No significant

associations were found between brain activation and self-certainty

(Buchy et al., 2015; Lee et al., 2015; van der Meer et al., 2013).

It should be noted that the cognitive insight measure was designed to

measure the ability to take distance from, reflect upon and re-evaluate

one's own beliefs and interpretations. Self-reflectiveness, as it is part of

the cognitive insight construct, therefore, is different from self-reflection

(van der Meer et al., 2010), self-related or self-referential processing

(Northoff et al., 2006; Qin and Northoff, 2011), and self-generated

thoughts (Andrews-Hanna et al., 2014) which are considered broader

processes involving any kind of self-referential processing. In contrast,

cognitive insight refers to very specific conscious reflection on one's own

beliefs and interpretations and therefore has a stronger meta-cognitive

component. Not surprisingly, there is some conceptual overlap and

overlap in associated brain regions, as self-referential processing is

mostly associated with cortical midline or default mode network struc-

tures such as the medial prefrontal cortex and posterior cingulate cortex,

in addition to other areas such as the insula. In contrast, results of pre-

vious studies on cognitive insight suggest spatially diffuse abnormalities

across the brain in individuals with poorer self-reflectiveness or cognitive

insight, which supports the idea that cognitive insight may be dependent

on integration of higher-order cognitive functions which cannot be pin-

pointed to isolated brain areas. Therefore, methods taking the complex

network of the brain into account should provide a more meaningful

explanation of impaired cognitive insight than a regional approach.

Evidence from fMRI-recordings indicate that BOLD activity of brain

areas temporarily synchronizes during the exchange of information

(Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca et al., 2006).

Moreover, fMRI studies revealed activation of distinct functional net-

works during resting state when an individual is not engaged in any task

(Biswal et al., 1995; Yeo et al., 2011). The relationship between (dy-

namic) functional networks and cognitive insight has not been studied in

healthy individuals thus far. In schizophrenia spectrum disorders, a previous

study showed that reduced resting state functional connectivity (FC) in

the left inferior frontal cortex in the right dorsal attention network was

associated with self-certainty (Gerretsen et al., 2014). This study exam-

ined static FC which reflects mean connectivity over the scan session.

However, during resting state, the brain spontaneously transitions be-

tween different states, characterized by different configurations of FC

(i.e. functional networks), which may reflect distinct mental processes

(Kucyi et al., 2018). Vidaurre et al. (2019) showed that while static FC

appears to be driven by structural differences between individuals (Bij-

sterbosch et al., 2018; Llera et al., 2019), time-varying functional con-

nectivity uniquely relates to behavioral traits (Vidaurre et al., 2019).

Their results suggest that time-varying FC might reflect transient ex-

change of information that fluctuates over and above the static FC that

was shown to be related to structure (Vidaurre et al., 2019). The authors

suggested that these time-varying dynamics of functional connectivity

might be especially related to dynamic elements of cognition (Kucyi

et al., 2017; Smallwood and Schooler, 2015; Vidaurre et al., 2019).

Studies have indeed shown the importance of examining time-varying

dynamics of functional connectivity for processes such as social cogni-

tion (Sun et al., 2020), self-serving bias (Cui et al., 2020) and attention

(Fong et al., 2019). We hypothesize that cognitive insight requires

(social/meta-) cognitive processes such as self-monitoring, processing

and regulation of one's own state and performance while integrating new

information into one's thought processes and re-evaluating one's own

beliefs. This dynamic process requires constant updating taking the

current situation into account. Dynamic FC analyses reveal how func-

tional networks spontaneously fluctuate over time to get more insight

into the neural communication underlying cognitive insight. Therefore,

in this study, we examined the relationship between cognitive insight

and the occurrence, duration and switching profile of different FC states

during resting state fMRI. A previous study using the same methodology

to define FC states during resting state fMRI, found that individuals with

lower cognitive performance (based on an extensive battery of neuro-

psychological tests) switched more between states, spent less time in a

state characterized by global synchronization, and more time in states

involving default mode network (DMN) areas (Cabral et al., 2017). Given

the association between cognitive insight and neurocognition (see Nair

et al., 2014 for a meta-analysis), we hypothesized that individuals with

poorer cognitive insightmay similarly switch more between states, spend

less time in clearly defined states with strong large-scale connectivity,

and spend more time in the DMN-state.

Moreover, even though studies have shown a dependence of FC on

anatomical structure (Sporns et al., 2004), structural and functional ab-

normalities are often contradictory (for example in schizophrenia (For-

nito and Bullmore, 2015)). We therefore additionally relate cognitive

insight to characterizations of structural networks. DTI connectomes

represent anatomical connectivity based on probabilistic tractography on

diffusion weighted imaging (DWI). Gray matter (GM) connectomes are

based on similarity in GM-structure, which might result from mutual

genetic influences (Schmitt et al., 2009), axonal tension (Essen, 1997;

Gong et al., 2012; Hilgetag and Barbas, 2005), synchronized develop-

mental change (Alexander-Bloch et al., 2013), or functional coactivation

of brain areas (Alexander-Bloch et al., 2013; Evans, 2013; Seeley et al.,

2009). Altogether, by investigating the relation between cognitive

insight and brain variability measured with different MRI-modalities, we

aim to get a more comprehensive view of the neural correlates of

cognitive insight.

2. Materials and methods

2.1. Participants

We acquired resting state functional magnetic resonance imaging (rs-

fMRI), diffusion weighted imaging (DWI) and structural MRI (sMRI) data

of 59 healthy individuals. Participants were recruited in the local com-

munity through advertisements and word of mouth. Participants were

selected from a larger sample of 200 participants based on the distribu-

tion of their scores on the self-reflectiveness subscale of the Beck

Cognitive Insight Scale (BCIS) (Beck et al., 2004). We created three

groups (i.e. with 25% lowest, 50% average and 25% highest

self-reflectiveness scores) and randomly selected 20 individuals from

each group. Groups were matched on sex, age, and education. Inclusion

criteria were: right-handedness (i.e. score>60 on Edinburgh Handedness

Inventory) (Oldfield, 1971), age between 18 and 65, normal or corrected

to normal vision, MRI-compatibility, capability of giving informed con-

sent and fluency in written and spoken Dutch language. Exclusion criteria

were epilepsy or family history of epilepsy, use of medication that can
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influence task performance, recreational drug use, presence or history of

neurological, psychiatric or substance dependence disorder, smoking,

and a score �41 on the Schizotypal Personality Questionnaire (Raine,

1991). This study was in accordance with the latest version of the

Declaration of Helsinki and was approved by the medical ethical board of

the University Medical Center Groningen. All participants gave written

informed consent prior to participation. One participant was excluded

during analyses (see Results section for details), leaving 58 participants

for further analyses.

2.2. Self-reflectiveness, self-certainty and cognitive insight

Self-reflectiveness, self-certainty and their combination (i.e. com-

posite index score of cognitive insight; see distribution in Figure S1) were

measured with the Beck Cognitive Insight Scale (BCIS) (Beck et al.,

2004). The BCIS is a 15-item self-report questionnaire consisting of two

subscales measuring individuals’ ability to reflect upon themselves (i.e.

self-reflectiveness; Figure S2) and their overconfidence in their own be-

liefs (i.e. self-certainty; Figure S3). Answers are given on a 4-point

Likert-scale. A composite index score of cognitive insight is computed

by subtracting self-certainty scores from self-reflectiveness scores. Better

cognitive insight is reflected by higher composite index and

self-reflectiveness scores and lower self-certainty scores (Beck et al.,

2004). Two subscale scores and the composite index score were used for

(f)MRI-analyses.

Results of previous studies suggest that individuals can reliably rate

their experiences (Riggs et al., 2012), given that not only the initial

validation study but also several other studies from other groups have

shown reliability and validity of the BCIS. The BCIS can distinguish pa-

tients with psychosis from patients without psychosis and healthy in-

dividuals (Riggs et al., 2012), and several studies showed increased

self-certainty (i.e. poorer cognitive insight) in individuals with at-risk

mental state (Uchida et al., 2014) or at clinical high risk for psychosis

(Kimhy et al., 2014).

2.3. Functional connectivity analyses

2.3.1. Image acquisition

Seven minutes and 47 s (215 timepoints) of resting state BOLD

functional scans were acquired using a Siemens MAGNETOM Prisma 3T

MRI scanner (Siemens, Erlangen, Germany) with a multi-echo-EPI

sequence [TR¼ 2170ms; TE¼ 9.74, 22.1, and 34.46ms; FA¼ 60�;

FOV¼ 224� 224mm; matrix size¼ 75� 75mm; 39 axial slices; voxel

size¼ 3� 3� 3mm; slice order¼ sequential descending] (Feinberg

et al., 2010; Moeller et al., 2010; Xu et al., 2013). Functional scans were

acquired with an in-plane acceleration factor (GRAPPA) of 4. Participants

were shown a fixation cross, and they were instructed to relax, stay

focused on the fixation cross and not fall asleep.

2.3.2. Preprocessing resting state fMRI-data

Since our fMRI-data was acquired at three echo times, data was

denoised using meica.py in AFNI (version 2.5 beta9) (Cox, 1996; Kundu

et al., 2013, 2012). In short, the following steps were taken: (1) slice time

correction, (2) realignment, (3) concatenating all data across echo times

and space, (4) identification of components using decomposition of

multi-echo data with independent component analysis (ICA), (5) differ-

entiation of BOLD-components from non-BOLD components, (6) removal

of non-BOLD components from time series by using them as noise re-

gressors in time course de-noising, and (7) combination of the three

denoised echo time series into one denoised single time series using a T2*

weighting scheme (Kundu et al., 2012; Posse et al., 1999).

Consequently, denoised timeseries were additionally preprocessed in

SPM12 (www.fil.ion.ucl.ac.uk/spm) in Matlab R2015a (Mathworks inc,

Natick, MA). Steps included: (1) construction of temporal mean time

series, (2) coregistration of all functional images (i.e. source

image¼mean image created during previous step), and anatomical

image (i.e. reference image) and (3) normalization of all images to MNI

space and reslicing of voxels to 2� 2� 2mm3 voxels. Last, data was

filtered in Matlab with band-pass temporal filtering (0.04–0.07 Hz) using

a 7th-order Butterworth filter (Glerean et al., 2012). We then extracted

time series for 90 cortical and subcortical areas of the Automated

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) by

averaging the non-zero signal of all voxels within that area. The

AAL-atlas was chosen so that results could be compared with previous

studies using the same methodology (Cabral et al., 2017; Figueroa et al.,

2019; Lord et al., 2019).

2.3.3. Time-varying dynamics of resting state functional connectivity

In order to examine dynamic FC, we used a data-drivenmethod called

Leading Eigenvector Dynamics Analysis (LEiDA). The method is

described in Cabral et al. (2017), and the code is available on Github

(github.com/juanitacabral/LEiDA).

We first estimated the phase of the fMRI time series for each of the

90 brain regions using the Hilbert transform. 14 volumes (i.e. 2*7

because of 7th-order Butterworth filter) at the beginning and ending of

scanning were discarded to avoid edge effects that are inherent to the

Hilbert transform, leaving 187 time points (i.e. 6 min and 46s) for

further analyses. Next, we calculated phase coherence as the cosine of

the difference in phases of two regions at each time point. This resulted

in a symmetric BOLD phase coherence matrix of size 90 � 90 � 187 for

each individual (i.e. 90 brain areas and 187 timepoints). In order to

reduce the dimensionality of the functional connectivity patterns per

time point, we took the 1x90 leading eigenvector of each BOLD phase

coherence matrix, resulting in 10846 leading eigenvectors (i.e. 58 in-

dividuals � 187 time points). A matrix of size 90x10846 was created by

concatenating all eigenvectors from all subjects and time points. K-

means clustering (with 2–20 clusters, each repeated 20 times) was

applied on all 10846 leading eigenvectors to get functional states across

individuals and time points. The number of clusters with the highest

Dunn index was selected (Dunn, 1973). A higher Dunn index indicates

better clustering reflected by compact clusters (i.e. small variance

within cluster) which are separated well from other near clusters. This

resulted in a 58x187 matrix (i.e. subject x time point), with information

on which state each time point belonged to. We compared the states to

the seven resting-state networks as described by Yeo et al. (2011). The

seven resting-state networks were transformed into vectors with 90

elements (i.e. 90 AAL-areas) representing how much that AAL-area

contributes to the resting state network (Lord et al., 2019). Correla-

tions were then calculated between the seven networks and states 2–4.

Only positive elements were kept of the state-vectors as they represent

the areas that formed a network desynchronized from the rest of the

brain (Lord et al., 2019).

After obtaining FC states, we calculated the switching frequency (i.e.

number of transitions between states per second), probabilities of

occurrence (i.e. fraction of time points in one state during entire scan

session), lifetime (i.e. mean number of consecutive time points in the

same state) and switching profile (i.e. probabilities of switching from a

certain state to another) between states (i.e. clusters) per individual

(Cabral et al., 2017; Figueroa et al., 2019; Lord et al., 2019; Stark et al.,

2019). We then computed associations of these values with our insight

measures (see Statistical Analyses).

2.4. Structural DTI connectome analyses

2.4.1. Image acquisition

Diffusion-weighted images were acquired using a Siemens MAGNE-

TOM Prisma 3T MRI scanner (Siemens, Erlangen, Germany) with a 64-

channel head coil. 60 slices were acquired with the following parame-

ters: TR¼ 8500ms; TE¼ 90ms; FOV¼ 256� 256mm; matrix

size¼ 128� 128 mm; image resolution 2 x 2 x 2 mm3 without gap;

GRAPPA¼ 2, SMS¼ 2. In total, 74 volumes were acquired per subject,

ten without diffusion weighting (b¼ 0 s/mm2) and 64 with diffusion
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weighting (b¼ 1000 s/mm2) along 64 isotropically distributed

directions.

2.4.2. Structural DTI connectome analyses

The following steps were conducted in FSL version 5.0 (Woolrich

et al., 2009) with default parameters: (1) correction for eddy-current

induced distortion and motion with the eddy tool (Andersson and

Sotiropoulos, 2016), (2) skull stripping of the T1-weighted image with

the brain extraction tool (BET) (Smith, 2002), (3) fitting the probabilistic

diffusion model with BEDPOSTX in the FDT toolbox (Behrens et al.,

2007, 2003), (4) (a) coregistration of the T1-image into diffusion space

(input¼ T1, reference¼ diffusion image), (b) warping of MNI-template

to diffusion space (input¼MNI152_T1_11mm_brain; refer-

ence¼ T1-image in diffusion space) and (c) warping the AAL-mask to

diffusion space with FLIRT (input¼AAL-mask; using normalization

matrix from FLIRT transformation of MNI-template to diffusion space)

(Jenkinson et al., 2002; Jenkinson and Smith, 2001), (5) parcellation into

90 non-cerebellar brain areas with the AAL-atlas, (6) creation of a

90� 90 network matrix using PROBTRACKX2 (number of sam-

ples¼ 5000; options omatrix1 and network) (Behrens et al., 2007, 2003),

and (7) fractional scaling and symmetrizing of the matrix following

Donahue et al. (2016). Ultimately, these steps resulted in a 90� 90

symmetrically weighted network of streamline probabilities per

individual.

Matrices were normalized (i.e. maximum value was scaled to 1;

function weight_conversion) using the Brain Connectivity Toolbox

(Rubinov and Sporns, 2010). We calculated path length (function dis-

tance_wei_floyd with log transform) and clustering coefficient (function

clustering_coef_wu_sign with Zhang & Horvath formula). In addition, 20

randomized reference networks with preserved weight, degree and

strength distributions were created per individual (function null_mode-

l_und_sign), and their higher-order graph metrics were calculated. Sub-

sequently, we calculated normalized path length and normalized

clustering coefficient by dividing path length and clustering coefficient of

each network, respectively, by those averaged from 20 random networks.

Last, we computed small-world coefficients by dividing normalized

clustering coefficient with normalized path length.

2.5. Structural gray matter connectome analyses

2.5.1. Image acquisition

Structural scans were acquired in the sagittal plane using a Siemens

MAGNETOM Prisma 3T MRI scanner (Siemens, Erlangen, Germany). A

Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence was

used with the following parameters: voxel size¼ 1� 1� 1.2mm;

FOV¼ 176� 240� 256mm; TR¼ 2300ms, TE¼ 2.98ms; TI¼ 900ms;

FA¼ 9�.

2.5.2. Structural gray matter connectome analyses

The method for construction of gray matter networks is described in

Tijms et al. (2012) (Tijms et al., 2012) and the code is available on Github

(https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks).

In short, gray matter segmentations were parcellated into cubes, each

consisting of 27 voxels (3� 3� 3 voxels). Values within these cubes were

correlated with each other to create a N�N similarity matrix. The

maximum correlation between two cubes was computed by calculating

correlations between cubes while rotating the seed cube withmultiples of

45�. Each network was binarized by applying a subject-specific threshold

of p< 0.05, as determined by permutation testing.

An AAL-atlas was warped to subject space per individual with (1)

inverse deformation parameters obtained during segmentation and (2)

coregistration parameters obtained during creation of gray matter net-

works. Global graph metrics were calculated per individual using the

Brain Connectivity Toolbox while only including nodes (i.e., cubes) of

which at least one voxel fell within the AAL-mask. We calculated basic

metrics such as degree (i.e. number of edges; function degrees_und) and

density (i.e. number of existing edges relative to number of all possible

edges; function density_und), and higher-order metrics such as path

length (i.e. the minimum number of edges between any two nodes;

functions distance_bin and charpath) and clustering coefficient (fraction

of node's neighbors that are each other's neighbors; function cluster-

ing_coef_bu). In addition, 20 randomized reference networks with iden-

tical size, degree and degree distribution were created per individual

(function randmio_und) and their higher-order graph metrics were

calculated using the Brain Connectivity Toolbox. Last, normalized path

length, normalized clustering coefficient and small-world coefficients

were calculated.

2.6. Covariates

All behavioral data was analyzed in R version 3.5.2 (R Core team,

2018). Matching of groups on sex was checked with ANOVA, while

matching on age and education was checked with Spearman correla-

tions between these variables and cognitive insight (i.e.,

self-reflectiveness, self-certainty or composite index scores). We addi-

tionally checked the differences in cognitive insight between in-

dividuals with and without experience with mindfulness or meditation.

The correlation between cognitive insight and motion during resting

state fMRI was investigated after calculating framewise displacement

(Power et al., 2012) on motion parameters obtained from realignment

during ME-ICA (see Figure S4 for mean framewise placement per

participant). With regard to structural connectome analyses, earlier

studies showed that basic graph metrics influence higher-order graph

metrics (van Wijk et al., 2010). Therefore, we checked (Spearman)

correlations between cognitive insight (i.e., self-reflectiveness, self--

certainty or composite index scores) and size, degree and density of

gray matter connectomes. We did not correlate cognitive insight with

the size, degree and density of DTI connectomes, because these values

were identical across subjects (i.e., size¼ 90, degree¼ 89, den-

sity¼ 100%). Lastly, given the wide age range of participants and

variation of resting-state networks across age (e.g. Andrews-Hanna

et al., 2007), we examined Spearman correlations between age and all

functional and structural brain measures.

2.7. Statistical analyses

The relationship between cognitive insight and time-varying dy-

namics of resting state fMRI was examined with Spearman correlations

between self-reflectiveness, self-certainty or the composite index score of

cognitive insight on one hand, and state metrics (i.e. switching fre-

quency, lifetime of states, occurrence of being in certain states) on the

other hand. In case of significant correlations, we additionally investi-

gated the probabilities of switching from a certain state to another for

states that were significantly related to cognitive insight in prior

analyses.

The relationship between cognitive insight and structural con-

nectome organization was assessed using (partial) Spearman correlations

between self-reflectiveness, self-certainty or cognitive insight and higher-

order graph metrics (i.e. path length, clustering coefficient and small-

world coefficients) for both the gray matter as well as the DTI con-

nectomes. In case of gray matter connectomes, we corrected for total gray

matter volume.

In line with previous studies applying the same methodology, find-

ings were considered significant at a threshold of p< 0.05, two-tailed. As

this is the first multimodal investigation of cognitive insight and we

wanted to enhance the probability of hypothesis-generating findings at

this early stage of investigation, we additionally report trend-level sig-

nificant results (p-value between 0.05 and 0.1) in Tables 3–4 and Fig. 6

(but not in the main text of the Results section). The raw data is available

by contacting the corresponding author.
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3. Results

3.1. Participants

Our study included 59 participants. One participant was excluded

because of no convergence of the ME-ICA algorithm on their fMRI-data.

All characteristics of the remaining 58 participants can be seen in Table 1.

3.2. Covariates

No significant correlations were found between cognitive insight (i.e.,

self-reflectiveness, self-certainty or composite index score) and either

age, education, or motion during resting state fMRI, nor size or degree of

gray matter connectomes (see Table S2). No significant differences in

cognitive insight were found between males and females, and between

individuals with and without experience with mindfulness or meditation.

A significant correlation was found between BCIS composite index scores

and density of gray matter connectomes. Therefore, density was included

as a covariate in further analyses including the BCIS composite index

score. Lastly, significant correlations were found between age and

normalized clustering coefficient, normalized path length, and small-

world coefficient of GM networks (see Table S3). Therefore, further an-

alyses with these variables were additionally controlled for age. No sig-

nificant correlations were found between age and time-varying dynamics

of resting state functional connectivity, nor between age and DTI con-

nectome characteristics.

3.3. Time-varying dynamics of resting state functional connectivity

K-means clustering revealed an optimal solution with four clusters, in

which each cluster represents a recurrent state of FC (Figure S5). The

states are represented by a 90� 4 matrix (i.e. ROI x state) reflecting the

contribution of each brain area to each state. Additionally, we had a 58 x

187 matrix (i.e. subject x time point) with information on which state

each time point belonged to. State 1 (occurring about 52% of the time)

reflects a state of global BOLD coherence in line with previous studies

examining resting state functional connectivity states (Cabral et al.,

2017; Lord et al., 2019). During the other states, BOLD phases of a limited

set of regions desynchronize with BOLD phases of the rest of the brain

(while retaining synchrony amongst themselves) thereby forming a

network (Fig. 1). State 2, occurring 19% of the time, represents a network

consisting of areas such as the Rolandic operculum, insula, supra-

marginal gyrus, putamen, right pallidum, left thalamus, Heschl gyrus, left

superior temporal gyrus and left amygdala. This network correlated with

the ventral attention network of Yeo et al. (2011) (r¼ 0.5, p< 0.001;

Figs. 1–2 and Table 2). State 3 represents a network consisting of areas

such as the medial superior frontal gyrus, medial orbitofrontal gyrus,

gyrus rectus, left olfactory gyrus, left inferior orbitofrontal gyrus, anterior

cingulate cortex, posterior cingulate cortex, angular gyrus, temporal

pole, left middle temporal gyrus. This network, occurring 17% of the

time, correlated with the default mode network of Yeo et al. (2011)

(r¼ 0.37, p< 0.001; Figs. 1–2 and Table 2). State 4 represents a network

consisting of areas such as calcarine, cuneus, lingual gyrus, superior oc-

cipital gyrus, middle occipital gyrus, inferior occipital gyrus, fusiform

gyrus and right superior parietal gyrus (probability of occurrence: 12%).

This network correlated with the visual network of Yeo et al. (2011)

(r¼ 0.92, p< 0.001; Figs. 1–2 and Table 2). Thus, states 2–4 were

significantly positively correlated to only one of the known networks (see

Table 2) (Yeo et al., 2011). Therefore, in the rest of the text, these states

will be addressed with the name of the known network (Yeo et al., 2011).

3.4. Statistical analyses

3.4.1. Cognitive insight and time-varying dynamics of resting state fMRI

We found that individuals with lower cognitive insight (composite

index score) switchmore frequently between states (rs¼�0.28, p¼ 0.04;

Fig. 3A) and have a lower lifetime of the global synchronization state

(rs¼ 0.26, p¼ 0.045; Fig. 3B). Similarly, for the self-reflectiveness

dimension, individuals with lower self-reflectiveness also switched

more between states (rs¼�0.32, p¼ 0.01; Fig. 4A). Additionally, they

have a higher lifetime (rs¼�0.27, p¼ 0.04; Fig. 4B) and a higher

probability of occurrence of the DMN-state (rs¼�0.40, p¼ 0.002;

Fig. 4C). Based on these results, we examined how self-reflectiveness

relates to switching probabilities from and towards the DMN-state. We

found that individuals with lower self-reflectiveness had a higher chance

of switching from the ventral attention network state to the DMN-state

(rs¼�0.32, p¼ 0.01; Fig. 4D). The other switching probabilities be-

tween states and how they relate to cognitive insight are reported in

Table 3.

3.4.2. Cognitive insight and structural connectomes

We found a significant correlation between lower self-reflectiveness

and lower normalized clustering coefficient of the DTI-connectomes

(rs¼ 0.27, p¼ 0.04; Fig. 5). No significant associations were observed

between cognitive insight and global graph metrics of gray matter con-

nectomes (Table 4).

3.5. Post-hoc analyses of self-reflectiveness and local structural network

metrics of the DMN

Given the significant associations that were found between self-

reflectiveness and time-varying dynamics of the DMN-state, we calcu-

lated Spearman correlations between self-reflectiveness and local struc-

tural graph metrics of the 17 areas involved in that state (i.e. all areas

with positive weights in state vector reflecting the contribution of AAL-

areas to that state). False Discovery Rate (FDR)-correction for multiple

testing was applied with the p.adjust function in R (i.e. 17 tests).

For the higher-order graph metrics of the DTI-connectome, we found

Table 1

Participant characteristics (n¼ 58).

Mean (SD)

Sex (number of males/females) 14/44

Age (years) 25 (10.33)

Education levela 6.01 (0.40)

Mindfulness/meditation experience (number yes/no) 13/45

Insight Orientation Scale (IOS) 25 (3.38)

Beck Cognitive Insight Scale (BCIS)

Self-reflectiveness 10.66 (3.32)

Self-certainty 6.52 (2.38)

Composite index 4.14 (4.63)

Kentucky Inventory of Mindfulness Skills (KIMS)

Observing 38.16 (7.28)

Describing 28.98 (4.71)

Acting with awareness 31.29 (4.20)

Accepting without judgement 35.52 (5.52)

Total 133.95 (11.16)

Ten Item Personality Inventory (TIPI)

Openness to experience 10.64 (2.40)

Conscientiousness 10.09 (2.14)

Extraversion 9.52 (2.77)

Agreeableness 11.24 (1.56)

Emotional stability 10.60 (2.17)

QIDS-SR depressive symptoms 2.90 (1.83)

Intelligence quotientb 97.22 (9.70)

Processing speedc 67.71 (11.26)

Gray matter connectomes

Gray matter volume 560.17 (52.01)

Network size 5578.09 (475.73)

Network degree 1019.97 (106.75)

Network density 0.18 (0.009)

Abbreviations: QIDS-SR¼Quick Inventory of Depressive Symptomatology–Self-

Report.
a Based on Verhage (1964).
b Measured with the Dutch Adult Reading Test (1995).
c Measured with the digit symbol substitution test.
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a significant correlation between self-reflectiveness and normalized

clustering coefficient of the left angular gyrus (rs¼ 0.43, p< 0.001,

pFDR¼ 0.01; Supplementary Figure S6). No associations between self-

reflectiveness and local gray matter connectome characteristics sur-

vived the corrected significance threshold (Table 4).

3.6. Post-hoc analyses linking function and structure

Given the significant relationships that were found between cognitive

insight on the one hand, and characteristics of dynamic FC or structural

connectomes on the other hand (see Fig. 6), we further investigated the

Fig. 1. Dynamic functional connectivity states.

The optimal solution with 4 clusters returns 4 cluster centroids, with size 1x90, each representing the eigenvector of a phase coherence matrix. Each element in the

eigenvector corresponds to a brain area in the AAL parcellation, and areas can be divided into communities according to their sign in the eigenvector. A: full

unthresholded maps in which the BOLD signal phases in the leading eigenvector V1 are represented as arrows placed at the center of each AAL-region. In black:

projecting in the main (negative) direction of V1; in color: projecting to the opposite (positive) direction of V1 indicating a phase-shift from the main direction. B:

phase-shifted areas are rendered as patches. C: contribution of brain areas to each state. Red: ventral attention network state; Green: default mode network state; Blue:

visual network state.

Fig. 2. (A) Lifetime and (B) probability of occurrence of, and (C) switching profile between four functional connectivity states.

Table 2

Correlations between states 2–4 and seven resting state networks of Yeo et al. (2011).

State Dorsal attention

network

Default mode

network

Frontoparietal

network

Ventral attention

network

Limbic network Somatomotor

network

Visual network

#2 r¼�0.16, p¼ 0.13 r¼�0.19, p¼ 0.08 r¼�0.13, p¼ 0.24 r ¼ 0.50, p < 0.001* r¼�0.17,

p¼ 0.10

r¼ 0.11, p¼ 0.31 r¼�0.16, p¼ 0.14

#3 r¼�0.18, p¼ 0.09 r ¼ 0.37*, p < 0.001 r¼�0.1, p¼ 0.37 r¼�0.19, p¼ 0.08 r¼ 0.07, p¼ 0.55 r¼�0.17, p¼ 0.12 r¼�0.18, p¼ 0.09

#4 r¼ 0.00, p¼ 0.99 r¼�0.21, p¼ 0.05 r¼�0.18, p¼ 0.09 r¼�0.23, p¼ 0.03 r¼�0.03,

p¼ 0.79

r¼�0.18, p¼ 0.09 r ¼ 0.92, p <

0.001*

NB: negative correlations indicate that states correlate negatively (i.e. anticorrelate) with the networks of Yeo et al. (2011).
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relationship between function and structure for all relationships shown in

Fig. 6.

For the DTI connectome, significant correlations were found between

global normalized clustering coefficient and both the switching fre-

quency (rs¼�0.30, p¼ 0.02; Figure S7) and the probability of occur-

rence of the DMN-state (rs¼�0.26, p¼ 0.046; Figure S8). Furthermore,

we found a relationship between lower global small-world coefficient

and higher switching frequency (rs¼�0.32, p¼ 0.02; Figure S9). Last,

we found that a lower small-world coefficient of the left angular gyrus

was related to higher lifetime of the DMN-state (rs¼�0.26, p¼ 0.049;

Figure S10) and to a higher probability of occurrence of the DMN-state

(rs¼�0.37, p¼ 0.004; Figure S11).

For the gray matter connectome, significant correlations were found

between normalized path length of the right temporal pole and lifetime

(rs¼ 0.28, p¼ 0.036; Figure S12) and probability of occurrence

(rs¼ 0.31, p¼ 0.02; Figure S13) of the DMN-state. No significant corre-

lations were found between global path length and function (Fig. 6).

3.7. Robustness and generalizability of results

We tested the robustness and generalizability of the results, by testing

the effect of choosing k¼ 3 and k¼ 5 states. The alternative clustering

solutions resulted in states that are less separated into and comparable to

known functional networks compared to the k¼ 4 solution (Tables S4

Fig. 3. Scatterplots of Spearman correlations between time-varying dynamics of resting state functional connectivity and BCIS composite index scores.

Fig. 4. Scatterplots of Spearman correlations between time-varying dynamics of resting state functional connectivity and BCIS self-reflectiveness (SR) scores.
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and S5; Fig. S14 and S15). We also checked whether results changed with

these different clustering solutions. Both alternative clustering solutions

yielded similar correlations between cognitive insight and time-varying

dynamics of resting state functional connectivity. For the k¼ 3 solu-

tion, we observed that correlations between self-reflectiveness and life-

time and probability of occurrence of state 1 became larger, while

correlations between self-reflectiveness and lifetime of state 3 became

smaller, compared to the k¼ 4 solution (Table S6). In the k¼ 3 solution,

participants also spent more time in state 1, so this state might entail

regions that were allocated to the other states, such as the DMN-state, in

the k¼ 4 solution. The k¼ 5 solution also gave similar results (Table S7),

with some correlations being slightly smaller. Altogether, findings for

k¼ 3 and k¼ 5 solutions were similar to the k¼ 4 solution showing that

these results are robust across different number of states (see Supple-

mentary Materials for more details).

4. Discussion

In this study, we examined how cognitive insight in healthy in-

dividuals relates to dynamic properties of brain functional connectivity

(assessed with fMRI) and graph properties of the underlying structural

connectomes (assessed from DTI and gray matter connectivity). We found

that individuals with poorer cognitive insight have less stable functional

as well as structural networks. This holds specifically for individuals with

poorer self-reflectiveness. Furthermore, an overly present DMN appears

to play a key role in poorer self-reflectiveness.

4.1. Functional connectivity

Individuals with lower cognitive insight (i.e. composite index score),

and self-reflectiveness specifically, switch more between states, sug-

gesting less stable networks. Additionally, they spend less time in a global

synchronization state. This state likely reflects the global signal, which is

expected to be a combination of neural and non-neural signal (i.e.

breathing, motion, changes in vigilance and arousal etc.) (Cabral et al.,

2017; Figueroa et al., 2019; Keller et al., 2013; Murphy and Fox, 2017;

Scholvinck et al., 2010). It has been suggested to reflect a baseline FC

state in which the whole brain is synchronized (Cabral et al., 2017;

Figueroa et al., 2019). Lord et al. (2018) indeed showed higher proba-

bility of occurrence of the global synchronization state, suggesting a

highly integrated brain, after psychedelic drug injection (Lord et al.,

2019). This state is costly in energetic terms, and, depending on cir-

cumstances, the brain may move efficiently from this globally synchro-

nized baseline state to less energetically costly segregated specialized

networks (Figueroa et al., 2019; Nomi et al., 2017).

Furthermore, individuals with lower self-reflectiveness spend more

time in and had a higher occurrence of a state characterized by

desynchronization of regions implicated in the DMN. The DMN has been

suggested to be involved in introspective cognitive functions including

mind-wandering (Christoff et al., 2009; Mason et al., 2007). The rela-

tionship between cognitive insight and resting state connectivity had not

been studied in healthy individuals thus far, and a study in patients with

schizophrenia did not find relationships with the cognitive insight score

nor self-reflectiveness dimension (Gerretsen et al., 2014). This study

examined static FC, however, while it has been increasingly suggested

that transitions between neurocognitive states are important for neuro-

cognitive processes. fMRI-studies did implicate DMN-abnormalities in

poorer cognitive insight, or self-reflectiveness specifically (Buchy et al.,

Table 3

Spearman correlations between cognitive insight and time-varying dynamics.

Mean

(SD)

BCIS SR BCIS SC BCIS CI

Switching

frequency

0.04

(0.01)

rs¼ -0.32, p¼

0.01*

rs¼ 0.12,

p¼ 0.38

rs¼ -0.28, p¼

0.04*

Lifetime

State 1 42.07

(20.10)

rs ¼ 0.24, p ¼

0.07

rs¼�0.18,

p¼ 0.18

rs ¼ 0.26, p ¼

0.045*

State 2 15.57

(8.68)

rs¼ 0.15,

p¼ 0.25

rs¼ 0.03,

p¼ 0.80

rs¼ 0.10,

p¼ 0.45

State 3 14.08

(7.11)

rs¼ -0.27, p¼

0.04*

rs¼�0.16,

p¼ 0.23

rs¼�0.09,

p¼ 0.48

State 4 13.37

(11.45)

rs¼�0.05,

p¼ 0.74

rs¼ 0.02,

p¼ 0.91

rs¼�0.02,

p¼ 0.88

Probability of occurrence

State 1 0.52

(0.21)

rs¼ 0.16,

p¼ 0.22

rs¼�0.11,

p¼ 0.42

rs¼ 0.16,

p¼ 0.23

State 2 0.19

(0.14)

rs¼�0.01,

p¼ 0.93

rs¼ 0.10,

p¼ 0.45

rs¼�0.06,

p¼ 0.65

State 3 0.17

(0.10)

rs¼ -0.40, p¼

0.002*

rs¼�0.07,

p¼ 0.62

rs¼ -0.23, p¼

0.08

State 4 0.12

(0.08)

rs¼�0.13,

p¼ 0.33

rs¼ 0.08,

p¼ 0.57

rs¼�0.11,

p¼ 0.43

Switching probabilities

State 1-1 0.94

(0.03)

rs¼ 0.19,

p¼ 0.15

rs¼�0.22,

p¼ 0.11

rs¼ 0.24,

p¼ 0.06

State 1-2 0.02

(0.02)

rs¼�0.04,

p¼ 0.77

rs¼ 0.03,

p¼ 0.82

rs¼�0.05,

p¼ 0.74

State 1-3 0.02

(0.01)

rs¼�0.17,

p¼ 0.21

rs¼ 0.07,

p¼ 0.63

rs¼�0.16,

p¼ 0.24

State 1-4 0.01

(0.02)

rs¼�0.15,

p¼ 0.27

rs¼ 0.27,

p¼ 0.04

rs¼ -0.23, p¼

0.08

State 2-1 0.11

(0.16)

rs¼ 0.05,

p¼ 0.70

rs¼�0.13,

p¼ 0.35

rs¼ 0.08,

p¼ 0.55

State 2-2 0.82

(0.15)

rs¼ 0.09,

p¼ 0.50

rs¼ 0.12,

p¼ 0.38

rs¼ 0.01,

p¼ 0.93

State 2-3 0.04

(0.05)

rs¼ -0.32, p¼

0.01*

rs¼ 0.06,

p¼ 0.65

rs¼�0.24,

p¼ 0.07

State 2-4 0.04

(0.05)

rs¼�0.05,

p¼ 0.74

rs¼�0.06,

p¼ 0.65

rs¼ 0.01,

p¼ 0.95

State 3-1 0.08

(0.07)

rs¼ 0.10,

p¼ 0.44

rs¼ 0.04,

p¼ 0.73

rs¼ 0.05,

p¼ 0.72

State 3-2 0.04

(0.05)

rs¼�0.15,

p¼ 0.28

rs¼�0.003,

p¼ 0.98

rs¼�0.10,

p¼ 0.44

State 3-3 0.79

(0.17)

rs¼�0.21,

p¼ 0.12

rs¼�0.14,

p¼ 0.31

rs¼�0.06,

p¼ 0.67

State 3-4 0.09

(0.16)

rs¼ 0.07,

p¼ 0.61

rs¼�0.01,

p¼ 0.94

rs¼ 0.05,

p¼ 0.71

State 4-1 0.07

(0.07)

rs¼ 0.09,

p¼ 0.51

rs¼�0.02,

p¼ 0.89

rs¼ 0.07,

p¼ 0.59

State 4-2 0.05

(0.07)

rs¼�0.06,

p¼ 0.68

rs¼ 0.09,

p¼ 0.53

rs¼�0.07,

p¼ 0.63

State 4-3 0.13

(0.17)

rs¼�0.04,

p¼ 0.75

rs¼�0.03,

p¼ 0.85

rs¼�0.03,

p¼ 0.81

State 4-4 0.75

(0.19)

rs¼�0.02,

p¼ 0.86

rs¼ 0.04,

p¼ 0.80

rs¼�0.02,

p¼ 0.87

*Significant at p < 0.05.

Abbreviations: BCIS¼Beck Cognitive Insight Scale; SR¼ self-reflectiveness sub-

scale; SC¼ self-certainty subscale; CI¼ composite index score.

Note: state 1¼ global synchronization state; state 2¼ ventral attention network

state; state 3¼ default mode network state; state 4¼ visual network state.

Fig. 5. Scatterplot of Spearman correlation between normalized clustering co-

efficient of the DTI connectome and BCIS self-reflectiveness (SR) scores.
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2015, 2014; van der Meer et al., 2013), and even more consistently in

poorer clinical insight (i.e. illness awareness) in patients with schizo-

phrenia and individuals at ultra-high risk (e.g. Clark et al., 2018; Ger-

retsen et al., 2014; Liemburg et al., 2012). Clark et al., for example, found

that a strongly connected DMN was associated with poor insight into

subthreshold psychotic symptoms in ultra-high risk adolescents and

young adults (Clark et al., 2018). Most of these studies found that lower

self-reflectiveness or clinical insight was associated with lower activation

in or connectivity of DMN-regions (Buchy et al., 2015, 2014; Liemburg

et al., 2012; van der Meer et al., 2013). Our study supplements results of

previous studies by showing that temporal dynamics of functional net-

works are also related to cognitive insight. The strength of activation or

connectivity within functional networks or the whole brain was not

examined in this study. Indeed, the positive relationship between

self-reflectiveness or clinical insight and brain activation of DMN-regions

does not preclude our finding of a negative relationship between

self-reflectiveness and lifetime of the DMN-state.

Results of our study showed that, in individuals with lower self-

reflectiveness, the probabilities of switching to the DMN-state were

higher from a state involving regions of the ventral attention network

(Yeo et al., 2011). The ventral attention network likely reflects a com-

bination of the salience (Seeley et al., 2007) and cingulo-opercular net-

works (Dosenbach et al., 2007; Yeo et al., 2011). The insula plays an

important role within the salience network, mediating the switch be-

tween interoceptive DMN function and exteroceptive task-externally

oriented attention (Menon and Uddin, 2010). It has been implicated in

interoceptive awareness as well as higher-order cognitive processes such

as cognitive control and attention (Menon and Uddin, 2010). Insular

abnormalities were found to be related to poorer (meta)cognitive insight

in patients with a psychotic disorder in earlier studies (Caletti et al.,

2017; Spalletta et al., 2014). One could argue that dwelling longer in the

ventral attention network and switching less back to the DMN could

enhance “being in touch with oneself” in a quite literal way as this

network is involved in the representation of awareness of bodily states

(Damasio, 1999). It should be noted that no correction for multiple

testing was applied, however, so no strong conclusions can be drawn

from this result without replication in future studies. Tentatively, our

results could suggest that people with lower levels of insight may have

less access to their own emotional states.

Altogether, our FC findings imply less stable functional networks

(implicated by increased switching frequency), less global integration

(implicated by lower time spent in the globally synchronized state) and

an overly present DMN in individuals with poorer cognitive insight, and

poorer self-reflectiveness specifically. An explanation for our results that

individuals with lower cognitive insight spend less time in the globally

synchronized baseline state, could be that in these individuals the tran-

sition towards specialized networks is more difficult, rendering more

frequent switching between states, less stable functional networks and an

overly present DMN.

4.2. Structural connectivity

Reoccurring patterns of FC might reinforce structural connections.

Since our FC findings imply less stable functional networks and less

global integration, one would expect reduced segregation and integration

of structural connectomes. For self-reflectiveness, our results for the DTI

connectomes indeed suggest less stable or segregated structural net-

works, as implicated by significantly lower clustering coefficient. How-

ever, we did not find reduced integration (reflected by path length) in the

DTI connectome. When examining the relationship between brain func-

tion and structure further, we found that less anatomical segregation into

clearly-defined networks (i.e. lower clustering coefficient) was related to

less stable functional networks (i.e. higher switching frequency) and

spending more time in the DMN (i.e. higher probability of the DMN-

state).

Given our finding of a relationship between self-reflectiveness and

temporal dynamics of the DMN, one would expect structural abnormal-

ities of DMN-regions in addition to global structural abnormalities. With

regard to the DTI connectome, we indeed found that individuals with

lower self-reflectiveness show decreased segregation (i.e. lower clus-

tering coefficient and trend-level lower small-world coefficients), indi-

cating lower embeddedness, of the left angular gyrus with the rest of the

brain. When linking function to structure, reduced small-world co-

efficients of the left angular gyrus were related to longer time spent in

and higher probability of occurrence of the DMN-State. This is in line

with fMRI- and PET-studies that identified the angular gyrus as a key

Table 4

Spearman correlations between cognitive insight and global and local (i.e. re-

gions of State 3) graph metrics of structural connectomes.

Mean

(SD)

BCIS SR BCIS SC BCIS CI

Global

Gray matter connectomesa

Path length 1.96

(0.02)

rs ¼ -0.24, p ¼

0.068

rs¼ 0.08,

p¼ 0.53

rs ¼ -0.24, p

¼ 0.077b

Clustering

coefficient

0.48

(0.02)

rs¼ 0.19,

p¼ 0.15

rs¼�0.18,

p¼ 0.19

rs ¼ 0.26, p

¼ 0.056b

Normalized path

length

1.08

(0.01)

rs¼�0.17,

p¼ 0.20

rs¼ 0.02,

p¼ 0.89

rs¼�0.14,

p¼ 0.30

Normalized

clustering

coefficient

1.63

(0.06)

rs¼�0.09,

p¼ 0.52

rs¼�0.06,

p¼ 0.69

rs¼�0.06,

p¼ 0.66

Small-world

coefficient

1.51

(0.02)

rs¼�0.09,

p¼ 0.49

rs¼�0.07,

p¼ 0.62

rs¼�0.03,

p¼ 0.81

DTI connectomes

Path length 3.55

(0.27)

r¼ 0.12,

p¼ 0.3665

rs¼ 0.06,

p¼ 0.63

rs¼ 0.06,

p¼ 0.63

Clustering

coefficient

0.14

(0.008)

rs¼�0.04,

p¼ 0.80

rs¼�0.14,

p¼ 0.31

rs¼ 0.03,

p¼ 0.81

Normalized path

length

1.39

(0.02)

rs¼ 0.19,

p¼ 0.15

rs¼�0.05,

p¼ 0.72

rs¼ 0.18,

p¼ 0.19

Normalized

clustering

coefficient

4.97

(0.25)

rs ¼ 0.27, p ¼

0.04*

rs¼�0.04,

p¼ 0.76

rs¼ 0.21,

p¼ 0.12

Small-world

coefficient

3.57

(0.18)

rs ¼ 0.23, p ¼

0.077

rs¼�0.04,

p¼ 0.77

rs¼ 0.17,

p¼ 0.2

Localc

Gray matter connectomesd

Path length

Right

temporal pole

rs¼�0.33,

p¼ 0.01,

pFDR¼ 0.20

Normalized path

length

Right

temporal pole

rs ¼ -0.38, p ¼

0.004, pFDR ¼

0.069

DTI connectomes

Normalized path length

Left superior

medial frontal

gyrus

rs¼ 0.27,

p¼ 0.0447,

pFDR¼ 0.76

Normalized clustering coefficient

Left angular

gyrus

rs ¼ 0.43, p <

0.001, pFDR ¼

0.01*

Small-world coefficient

Left angular

gyrus

rs ¼ 0.37, p ¼

0.0039, pFDR ¼

0.07

Abbreviations: BCIS¼Beck Cognitive Insight Scale; SR¼ self-reflectiveness sub-

scale; SC¼ self-certainty subscale; CI¼ composite index score.
a Corrected for total gray matter volume.
b Not trend-level significant anymore after additional correction for density

(which was correlated with BCIS CI).
c Locally, only correlations between self-reflectiveness and local graph metrics

of regions of State 3 were calculated. Correlations significant at puncorrected<0.05

are reported. FDR-correction for 17 tests (i.e. 17 regions in State 3).
d Corrected for total and local gray matter volume.
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region of the DMN (Greicius et al., 2003; Raichle et al., 2001; Uddin et al.,

2009). The angular gyrus has not been linked to cognitive insight in

previous studies, although one study found that increased connectivity in

the DMN with the left angular gyrus was associated with poorer clinical

insight in schizophrenia (Gerretsen et al., 2014).

No studies on the relationship between cognitive insight and struc-

tural connectivity have been conducted in healthy individuals before.

Two earlier DTI-studies did not find significant correlations with cogni-

tive insight nor its subdimensions in schizophrenia (�Cur�ci�c-Blake et al.,

2015; Orfei et al., 2013). This is the first study examining the

DTI-connectome, however. Altogether, our results suggest that in-

dividuals with lower self-reflectiveness show lower structural embedd-

edness of the angular gyrus, a key region of the DMN, and that this is

associated with an overly present DMN.

With regard to gray matter network structure, we only found asso-

ciations with self-reflectiveness at trend-level significance. Our results

show that lower self-reflectiveness was related to lower global (impli-

cated by higher path length) integration as well as local integration of the

right temporal pole. When linking structure to function, higher path

length of the right temporal pole was associated with a higher time spent

in and probability of occurrence of the DMN-state. No firm conclusions

can be drawn without replication of our results in other samples, given

that we only found associations at trend-level significance.

4.3. Strengths and limitations

The LEiDA-method allowed us to investigate time-varying dynamics

of resting state FC while taking FC per timepoint into account. Advan-

tages of this method are that 1) temporally delayed relationships can be

captured with phase coherence techniques (Lord et al., 2019), 2) no

window size has to be chosen in contrast to the sliding window approach

and, 3) there is less influence of high-frequency noise. The combination

of MRI-data of different modalities allowed us to get a more compre-

hensive view of the neural substrate of cognitive insight. This study has

several limitations. First, as the first study investigating dynamic con-

nectivity correlates of cognitive insight, our study had an exploratory

nature and needs replication in an independent sample. Second, to limit

false negatives and to enhance the probability of hypothesis-generating

findings at this early stage of investigation into the dynamic correlates

of insight, we did not apply the strictest method to correct for multiple

testing. This comes at the cost of an increased risk for false positives.

Third, the relatively coarse AAL-parcellation was used for all modalities,

in order to replicate methods of earlier studies to aid interpretation and

comparison of our results. For fMRI-data, a more fine-grained parcella-

tion based on FC (instead of structure) might yield further breakdown

into smaller subnetworks (Craddock et al., 2012; Gordon et al., 2016;

Hallquist and Hillary, 2019). Future studies could examine the effect of

different parcellations on functional connectivity states and how

time-varying dynamics of these states relate to cognitive insight. Fourth,

most tractography techniques underestimate long-range connections,

and probabilistic tractography might lead to false positives which have

shown to have a bigger influence on graph metrics than false negatives

(Zalesky et al., 2016). However, this is only expected to diminish the

association between DTI graphmetrics and cognitive insight. With regard

to the gray matter connectome, density differed between individuals as

connectomes were binarized by applying a subject-specific threshold.

Density is highly correlated with higher-order graph metrics such as path

length and clustering coefficient. Keeping densities similar across in-

dividuals might yield false-positive connections, however, therefore, we

chose to exactly replicate the existing method of Tijms et al. (2012).

4.4. Conclusions

Our results show converging evidence that functional and structural

networks of individuals with lower cognitive insight, and more specif-

ically poorer self-reflectiveness, are less stable. An overly present DMN

appears to play a key role. It is unclear, however, whether this generalizes

to neurological or psychiatric disorders characterized by poor insight,

such as schizophrenia. If replicated, our findings could have practical

implications, e.g. inform interventions that reinforce functional networks

(e.g. neurofeedback) or decrease mind-wandering (e.g. mindfulness

mediation training) (Mooneyham et al., 2016; Mrazek et al., 2013;

Zanesco et al., 2016). First and foremost, our results provide information

on the basic neural underpinnings of insight into mental processes and

support the use of dynamic connectivity analysis and multimodal imag-

ing to gain a further understanding of mental processes that are so central

to the human condition.
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